Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
2.
Immunol Cell Biol ; 101(6): 479-488, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2259473

RESUMEN

Effective vaccines have reduced the morbidity and mortality caused by severe acute respiratory syndrome coronavirus-2 infection; however, the elderly remain the most at risk. Understanding how vaccines generate protective immunity and how these mechanisms change with age is key for informing future vaccine design. Cytotoxic CD8+ T cells are important for killing virally infected cells, and vaccines that induce antigen-specific CD8+ T cells in addition to humoral immunity provide an extra layer of immune protection. This is particularly important in cases where antibody titers are suboptimal, as can occur in older individuals. Here, we show that in aged mice, spike epitope-specific CD8+ T cells are generated in comparable numbers to younger animals after ChAdOx1 nCoV-19 vaccination, although phenotypic differences exist. This demonstrates that ChAdOx1 nCoV-19 elicits a good CD8+ T-cell response in older bodies, but that typical age-associated features are evident on these vaccine reactive T cells.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Animales , Humanos , Ratones , ChAdOx1 nCoV-19 , COVID-19/prevención & control , Vacunación , Linfocitos T Citotóxicos , Anticuerpos Antivirales
3.
J Immunol ; 210(9): 1236-1246, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2276385

RESUMEN

mRNA vaccination of individuals with prior SARS-CoV-2 infection provides superior protection against breakthrough infections with variants of concern compared with vaccination in the absence of prior infection. However, the immune mechanisms by which this hybrid immunity is generated and maintained are unknown. Whereas genetic variation in spike glycoprotein effectively subverts neutralizing Abs, spike-specific T cells are generally maintained against SARS-CoV-2 variants. Thus, we comprehensively profiled human T cell responses against the S1 and S2 domains of spike glycoprotein in a cohort of SARS-CoV-2-naive (n = 13) or -convalescent (n = 17) individuals who received two-dose mRNA vaccine series and were matched by age, sex, and vaccine type. Using flow cytometry, we observed that the overall functional breadth of CD4 T cells and polyfunctional Th1 responses was similar between the two groups. However, polyfunctional cytotoxic CD4 T cell responses against both S1 and S2 domains trended higher among convalescent subjects. Multimodal single-cell RNA sequencing revealed diverse functional programs in spike-specific CD4 and CD8 T cells in both groups. However, convalescent individuals displayed enhanced cytotoxic and antiviral CD8 T cell responses to both S1 and S2 in the absence of cytokine production. Taken together, our data suggest that cytotoxic CD4 and CD8 T cells targeting spike glycoprotein may partially account for hybrid immunity and protection against breakthrough infections with SARS-CoV-2.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Infección Irruptiva , ARN Mensajero , Vacunación , Inmunidad Adaptativa , Glicoproteínas , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
J Infect Dis ; 227(6): 788-799, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2255125

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 virus-specific cytotoxic T-cell lymphocytes (vCTLs) could provide a promising modality in COVID-19 treatment. We aimed to screen, manufacture, and characterize SARS-CoV-2-vCTLs generated from convalescent COVID-19 donors using the CliniMACS Cytokine Capture System (CCS). METHODS: Donor screening was done by stimulation of convalescent COVID-19 donor peripheral blood mononuclear cells with viral peptides and identification of interferonγ (IFN-γ)+ CD4 and CD8 T cells using flow cytometry. Clinical-grade SARS-CoV-2-vCTLs were manufactured using the CliniMACS CCS. The enriched SARS-CoV-2-vCTLs were characterized by T-cell receptor sequencing, mass cytometry, and transcriptome analysis. RESULTS: Of the convalescent donor blood samples, 93% passed the screening criteria for clinical manufacture. Three validation runs resulted in enriched T cells that were 79% (standard error of the mean 21%) IFN-γ+ T cells. SARS-CoV-2-vCTLs displayed a highly diverse T-cell receptor repertoire with enhancement of both memory CD8 and CD4 T cells, especially in CD8 TEM, CD4 TCM, and CD4 TEMRA cell subsets. SARS-CoV-2-vCTLs were polyfunctional with increased gene expression in T-cell function, interleukin, pathogen defense, and tumor necrosis factor superfamily pathways. CONCLUSIONS: Highly functional SARS-CoV-2-vCTLs can be rapidly generated by direct cytokine enrichment (12 hours) from convalescent donors. CLINICAL TRIALS REGISTRATION: NCT04896606.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linfocitos T Citotóxicos , Leucocitos Mononucleares , Tratamiento Farmacológico de COVID-19 , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Citocinas , Interferón gamma
5.
Immunogenetics ; 75(3): 295-307, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2230917

RESUMEN

Infection with SARS-CoV-2 causes wide range of disease severities from asymptomatic to life-threatening disease. Understanding the contribution of immunological traits in immunity against SARS-CoV-2 and in protection against severe COVID-19 could result in effective measures to prevent development of severe disease. While the role of cytokines and antibodies has been thoroughly studied, this is not the case for T cells. In this review, the association between T cells and COVID-19 disease severity and protection upon reexposure is discussed. While infiltration of overactivated cytotoxic T cells might be harmful in the infected tissue, fast responding T cells are important in the protection against severe COVID-19. This protection could even be viable in the long term as long-living memory T cells seem to be stabilized and mutations do not appear to have a large impact on T cell responses. Thus, after vaccination and infections, memory T cells should be able to help prevent onset of severe disease for most cases. Considering this, it would be useful to add N or M proteins in vaccinations, alongside the S protein which is currently used, as this results in a broader T cell response.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunación , Linfocitos T Citotóxicos , Anticuerpos Antivirales
6.
Nat Commun ; 13(1): 7063, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: covidwho-2185825

RESUMEN

Although the importance of virus-specific cytotoxic T lymphocytes (CTL) in virus clearance is evident in COVID-19, the characteristics of virus-specific CTLs related to disease severity have not been fully explored. Here we show that the phenotype of virus-specific CTLs against immunoprevalent epitopes in COVID-19 convalescents might differ according to the course of the disease. We establish a cellular screening method that uses artificial antigen presenting cells, expressing HLA-A*24:02, the costimulatory molecule 4-1BBL, SARS-CoV-2 structural proteins S, M, and N and non-structural proteins ORF3a and nsp6/ORF1a. The screen implicates SARS-CoV-2 M protein as a frequent target of IFNγ secreting CD8+ T cells, and identifies M198-206 as an immunoprevalent epitope in our cohort of HLA-A*24:02 positive convalescent COVID-19 patients recovering from mild, moderate and severe disease. Further exploration of M198-206-specific CD8+ T cells with single cell RNA sequencing reveals public TCRs in virus-specific CD8+ T cells, and shows an exhausted phenotype with less differentiated status in cells from the severe group compared to cells from the moderate group. In summary, this study describes a method to identify T cell epitopes, indicate that dysfunction of virus-specific CTLs might be an important determinant of clinical outcomes.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2 , Linfocitos T Citotóxicos , Epítopos de Linfocito T , Antígenos HLA-A
7.
Nat Commun ; 14(1): 149, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2185821

RESUMEN

Evolution of SARS-CoV-2 in immunocompromised hosts may result in novel variants with changed properties. While escape from humoral immunity certainly contributes to intra-host evolution, escape from cellular immunity is poorly understood. Here, we report a case of long-term COVID-19 in an immunocompromised patient with non-Hodgkin's lymphoma who received treatment with rituximab and lacked neutralizing antibodies. Over the 318 days of the disease, the SARS-CoV-2 genome gained a total of 40 changes, 34 of which were present by the end of the study period. Among the acquired mutations, 12 reduced or prevented the binding of known immunogenic SARS-CoV-2 HLA class I antigens. By experimentally assessing the effect of a subset of the escape mutations, we show that they resulted in a loss of as much as ~1% of effector CD8 T cell response. Our results indicate that CD8 T cell escape represents a major underappreciated contributor to SARS-CoV-2 evolution in humans.


Asunto(s)
COVID-19 , Linfocitos T Citotóxicos , Humanos , SARS-CoV-2 , Linfocitos T CD8-positivos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus
8.
Math Biosci Eng ; 19(12): 12247-12259, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2071967

RESUMEN

The purpose of this paper is to give some sufficient conditions for the existence of periodic oscillation of a class of in-host MERS-Cov infection model with cytotoxic T lymphocyte (CTL) immune response. A new technique is developed to obtain a lower bound of the state variable characterizing CTL immune response in the model. Our results expand on some previous works.


Asunto(s)
Coronavirus del Síndrome Respiratorio de Oriente Medio , Linfocitos T Citotóxicos , Inmunidad
9.
Hum Immunol ; 83(12): 797-802, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2061225

RESUMEN

Differences in outcome to COVID-19 infection in different individuals is largely attributed to genetic heterogeneity leading to differential immune responses across individuals and populations. HLA is one such genetic factor that varies across individuals leading to differences in how T-cell responses are triggered against SARS-CoV-2, directly influencing disease susceptibility. HLA alleles that influence COVID-19 outcome, by virtue of epitope binding and presentation, have been identified in cohorts worldwide. However, the heterogeneity in HLA distribution across ethnic groups limits the generality of such association. In this study, we address this limitation by comparing the recognition of CTL epitopes across HLA genotypes and ethnic groups. Using HLA allele frequency data for ethnic groups from Allele Frequency Net Database (AFND), we construct synthetic populations for each ethnic group and show that CTL epitope strength varies across HLA genotypes and populations. We also observe that HLA genotypes, in certain cases, can have high CTL epitope strengths in the absence of top-responsive HLA alleles. Finally, we show that the theoretical estimate of responsiveness and hence protection offered by a HLA allele is bound to vary across ethnic groups, due to the influence of other HLA alleles within the HLA genotype on CTL epitope recognition. This emphasizes the need for studying HLA-disease associations at the genotype level rather than at a single allele level.


Asunto(s)
COVID-19 , Antígenos HLA , SARS-CoV-2 , Linfocitos T Citotóxicos , Humanos , Alelos , COVID-19/etnología , COVID-19/inmunología , Epítopos de Linfocito T , Etnicidad , Linfocitos T Citotóxicos/inmunología , Antígenos HLA/genética
10.
Chest ; 162(5): 1006-1016, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1944506

RESUMEN

BACKGROUND: Excessive inflammation is pathogenic in the pneumonitis associated with severe COVID-19. Neutrophils are among the most abundantly present leukocytes in the inflammatory infiltrates and may form neutrophil extracellular traps (NETs) under the local influence of cytokines. NETs constitute a defense mechanism against bacteria, but have also been shown to mediate tissue damage in a number of diseases. RESEARCH QUESTION: Could NETs and their tissue-damaging properties inherent to neutrophil-associated functions play a role in the respiratory failure seen in patients with severe COVID-19, and how does this relate to the SARS-CoV-2 viral loads, IL-8 (CXCL8) chemokine expression, and cytotoxic T-lymphocyte infiltrates? STUDY DESIGN AND METHODS: Sixteen lung biopsy samples obtained immediately after death were analyzed methodically as exploratory and validation cohorts. NETs were analyzed quantitatively by multiplexed immunofluorescence and were correlated with local levels of IL-8 messenger RNA (mRNA) and the density of CD8+ T-cell infiltration. SARS-CoV-2 presence in tissue was quantified by reverse-transcriptase polymerase chain reaction and immunohistochemistry analysis. RESULTS: NETs were found in the lung interstitium and surrounding the bronchiolar epithelium with interindividual and spatial heterogeneity. NET density did not correlate with SARS-CoV-2 tissue viral load. NETs were associated with local IL-8 mRNA levels. NETs were also detected in pulmonary thrombi and in only one of eight liver tissues. NET focal presence correlated negatively with CD8+ T-cell infiltration in the lungs. INTERPRETATION: Abundant neutrophils undergoing NETosis are found in the lungs of patients with fatal COVID-19, but no correlation was found with viral loads. The strong association between NETs and IL-8 points to this chemokine as a potentially causative factor. The function of cytotoxic T-lymphocytes in the immune responses against SARS-CoV-2 may be interfered with by the presence of NETs.


Asunto(s)
COVID-19 , Trampas Extracelulares , Humanos , Trampas Extracelulares/fisiología , SARS-CoV-2 , Linfocitos T Citotóxicos , Interleucina-8 , Pulmón , Neutrófilos/patología , ARN Mensajero/metabolismo
12.
J Hum Genet ; 67(7): 411-419, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1908140

RESUMEN

Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) was first reported in China in December 2019, various variants have been identified in different areas of the world such as United Kingdom (alpha), South Africa (beta and omicron), Brazil (gamma), and India (delta). Some of SARS-CoV-2 variants, each of which is characterized by a unique mutation(s) in spike protein, are concerned due to their high infectivity and the capability to escape from neutralizing antibodies elicited by vaccinations. To identify peptide epitopes that are derived from SARS-CoV-2 viral proteins and possibly induce CD8+ T cell immunity, we investigated SARS-CoV-2-derived peptides that are likely to bind to major histocompatibility complex (MHC) class I molecules. We identified a total of 15 peptides that bind to human leukocyte antigen (HLA)-A*24:02, HLA-A*02:01, or HLA-A*02:06, and possibly induce cytotoxic T lymphocytes (CTLs); thirteen of them corresponded to ORF1ab polyprotein, one peptide to spike protein and the remaining one to membrane glycoprotein. CD8+ T cells that recognize these peptides were detected in peripheral blood samples in three individuals recovered from COVID-19 as well as non-infected individuals. Since most of these peptides are commonly conserved among other coronaviruses including SARS-CoV and/or MERS-CoV, these might be useful to maintain T cell responses to coronaviruses that are pandemic at present and will become the future threat. We could define pairs of TRA and TRB sequences of nine CTL clones that recognize SARS-CoV-2-derived peptides. We might use these SARS-CoV-2-derived peptide-reactive TCR sequences for investigating the history of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Epítopos de Linfocito T/genética , Antígenos HLA-A , Humanos , Péptidos/química , Receptores de Antígenos de Linfocitos T , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T Citotóxicos
13.
Mucosal Immunol ; 15(5): 1028-1039, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1900470

RESUMEN

The lack of clinically applicable mucosal adjuvants is a major hurdle in designing effective mucosal vaccines. We hereby report that the calcium-binding protein S100A4, which regulates a wide range of biological functions, is a potent mucosal adjuvant in mice for co-administered antigens, including the SARS-CoV-2 spike protein, with comparable or even superior efficacy as cholera toxin but without causing any adverse reactions. Intranasal immunization with recombinant S100A4 elicited antigen-specific antibody and pulmonary cytotoxic T cell responses, and these responses were remarkably sustained for longer than 6 months. As a self-protein, S100A4 did not stimulate antibody responses against itself, a quality desired of adjuvants. S100A4 prolonged nasal residence of intranasally delivered antigens and promoted migration of antigen-presenting cells. S100A4-pulsed dendritic cells potently activated cognate T cells. Furthermore, S100A4 induced strong germinal center responses revealed by both microscopy and mass spectrometry, a novel label-free technique for measuring germinal center activity. Importantly, S100A4 did not induce olfactory bulb inflammation after nasal delivery, which is often a safety concern for nasal vaccination. In conclusion, S100A4 may be a promising adjuvant in formulating mucosal vaccines, including vaccines against pathogens that infect via the respiratory tract, such as SARS-CoV-2.


Asunto(s)
Adyuvantes Inmunológicos , Inmunidad Mucosa , Proteína de Unión al Calcio S100A4 , Vacunas , Administración Intranasal , Animales , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Recombinantes/inmunología , Proteína de Unión al Calcio S100A4/inmunología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T Citotóxicos/inmunología
14.
Clin Immunol ; 237: 108991, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1866980

RESUMEN

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Linfocitos T CD8-positivos , Humanos , Pulmón , Subgrupos de Linfocitos T , Linfocitos T Citotóxicos
15.
Science ; 375(6585): 1080, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1779303
16.
Front Immunol ; 13: 840610, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1775674

RESUMEN

T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T cell activation to proliferation, clonal expansion and effector function is crucial for efficient clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon activation by antigen presenting cells, T cells undergo metabolic reprograming that support effector functions. In this review we will discuss how metabolic reprograming dictates functionality during viral infections using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples. Moreover, we will briefly discuss T cell metabolic programs during bacterial infections exemplified by Mycobacterium tuberculosis (MT) infection.


Asunto(s)
Linfocitos T CD4-Positivos , COVID-19 , Linfocitos T CD8-positivos , Humanos , SARS-CoV-2 , Linfocitos T Citotóxicos
17.
Immunity ; 55(3): 542-556.e5, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1768197

RESUMEN

Some patients hospitalized with acute COVID-19 suffer respiratory symptoms that persist for many months. We delineated the immune-proteomic landscape in the airways and peripheral blood of healthy controls and post-COVID-19 patients 3 to 6 months after hospital discharge. Post-COVID-19 patients showed abnormal airway (but not plasma) proteomes, with an elevated concentration of proteins associated with apoptosis, tissue repair, and epithelial injury versus healthy individuals. Increased numbers of cytotoxic lymphocytes were observed in individuals with greater airway dysfunction, while increased B cell numbers and altered monocyte subsets were associated with more widespread lung abnormalities. A one-year follow-up of some post-COVID-19 patients indicated that these abnormalities resolved over time. In summary, COVID-19 causes a prolonged change to the airway immune landscape in those with persistent lung disease, with evidence of cell death and tissue repair linked to the ongoing activation of cytotoxic T cells.


Asunto(s)
Linfocitos B/inmunología , COVID-19/inmunología , Monocitos/inmunología , Trastornos Respiratorios/inmunología , Sistema Respiratorio/inmunología , SARS-CoV-2/fisiología , Linfocitos T Citotóxicos/inmunología , Adulto , Anciano , COVID-19/complicaciones , Femenino , Estudios de Seguimiento , Humanos , Inmunidad Celular , Inmunoproteínas , Masculino , Persona de Mediana Edad , Proteoma , Trastornos Respiratorios/etiología , Sistema Respiratorio/patología
18.
Biotechniques ; 72(4): 113-120, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1745236

RESUMEN

Understanding immune response to infections and vaccines lags understanding humoral responses. While neutralizing antibody responses wane over time, T cells are instrumental in long-term immunity. We apply machine learning and time-lapse imaging microscopy in nanowell grids (TIMING) to study thousands of videos of T cells with specificity for SARS-CoV-2 eliminating targets bearing spike protein as a surrogate for viral infection. The data on effector functions, including cytokine secretion and cytotoxicity, provide the first direct evidence that cytotoxic T lymphocytes from a convalescent patient targeting an epitope conserved across all known variants of concern are serial killers capable of eliminating multiple infected target cells. These data have implications for vaccine development and for the recovery and monitoring of infected individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Epítopos , Humanos , Glicoproteína de la Espiga del Coronavirus , Linfocitos T Citotóxicos
19.
Viruses ; 14(2)2022 01 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1649018

RESUMEN

While numerous studies have already compared the immune responses against SARS-CoV-2 in severely and mild-to-moderately ill COVID-19 patients, longitudinal trajectories are still scarce. We therefore set out to analyze serial blood samples from mild-to-moderately ill patients in order to define the immune landscapes for differently progressed disease stages. Twenty-two COVID-19 patients were subjected to consecutive venipuncture within seven days after diagnosis or admittance to hospital. Flow cytometry was performed to analyze peripheral blood immune cell compositions and their activation as were plasma levels of cytokines and SARS-CoV-2 specific immunoglobulins. Healthy donors served as controls. Integrating the kinetics of plasmablasts and SARS-CoV-2 specific antibodies allowed for the definition of three disease stages of early COVID-19. The incubation phase was characterized by a sharp increase in pro-inflammatory monocytes and terminally differentiated cytotoxic T cells. The latter correlated significantly with elevated concentrations of IP-10. Early acute infection featured a peak in PD-1+ cytotoxic T cells, plasmablasts and increasing titers of virus specific antibodies. During late acute infection, immature neutrophils were enriched, whereas all other parameters returned to baseline. Our findings will help to define landmarks that are indispensable for the refinement of new anti-viral and anti-inflammatory therapeutics, and may also inform clinicians to optimize treatment and prevent fatal outcomes.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/fisiopatología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Enfermedad Aguda , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , Recuento de Células Sanguíneas , Quimiocina CXCL10/sangre , Quimiocina CXCL10/inmunología , Citocinas/sangre , Citocinas/inmunología , Femenino , Humanos , Inflamación , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Linfocitos T Citotóxicos/inmunología , Adulto Joven
20.
J Immunol Methods ; 502: 113216, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1611844

RESUMEN

Coronavirus Disease 2019 (COVID-19) represents a new global threat demanding a multidisciplinary effort to fight its etiological agent-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this regard, immunoinformatics may aid to predict prominent immunogenic regions from critical SARS-CoV-2 structural proteins, such as the spike (S) glycoprotein, for their use in prophylactic or therapeutic interventions against this highly pathogenic betacoronavirus. Accordingly, in this study, an integrated immunoinformatics approach was applied to identify cytotoxic T cell (CTC), T helper cell (THC), and Linear B cell (BC) epitopes from the S glycoprotein in an attempt to design a high-quality multi-epitope vaccine. The best CTC, THC, and BC epitopes showed high viral antigenicity and lack of allergenic or toxic residues, as well as CTC and THC epitopes showed suitable interactions with HLA class I (HLA-I) and HLA class II (HLA-II) molecules, respectively. Remarkably, SARS-CoV-2 receptor-binding domain (RBD) and its receptor-binding motif (RBM) harbour several potential epitopes. The structure prediction, refinement, and validation data indicate that the multi-epitope vaccine has an appropriate conformation and stability. Four conformational epitopes and an efficient binding between Toll-like receptor 4 (TLR4) and the vaccine model were observed. Importantly, the population coverage analysis showed that the multi-epitope vaccine could be used globally. Notably, computer-based simulations suggest that the vaccine model has a robust potential to evoke and maximize both immune effector responses and immunological memory to SARS-CoV-2. Further research is needed to accomplish with the mandatory international guidelines for human vaccine formulations.


Asunto(s)
Antígenos Virales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Antígenos Virales/genética , Antígenos Virales/metabolismo , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/uso terapéutico , Biología Computacional , Simulación por Computador , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Inmunogenicidad Vacunal/genética , Memoria Inmunológica , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T Citotóxicos , Receptor Toll-Like 4/metabolismo , Desarrollo de Vacunas/métodos , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas de Subunidad/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA